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A modilied tau spectral method is presented which eliminates the spurious eigenvalues 
produced by the usual tau method. The modified tau method essentially involves an 
appropriate factorization of the differential operators in the eigenvalue problem. It is 
developed for eigenvalue problems posed as single differential equations or as systems of such 
equations. Several eigenvalue problems are solved using both the usual and modified 
Chebyshev-tau methods, including the Orr-Sommerfeld stability equation for plane Poiseuille 
flow. The convergence of the modified tau method is shown to be at least as rapid as that 
of the usual tau method. The use of the tau coefficients in indicating convergence is also 
discussed. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Spectral methods offer useful alternatives to finite difference and finite element 
methods for solving differential equations and eigenvalue problems. Advantages of 
spectral methods include the production of a global solution, rapid convergence, 
and, in some methods, avoidance of the Gibbs phenomenon at domain boundaries 
[l-3]. A particularly useful spectral method is the Chebyshev-tau method, in 
which Chebyshev polynomials are used in the tau method of Lanczos [S]. Applica- 
tion of the Chebyshev-tau method to eigenvalue problems, especially to 
hydrodynamic stability problems, has been hindered by the observation that the 
method can generate spurious eigenvalues; in a problem where hydrodynamic 
stability is indicated by eigenvalues with negative real parts, spurious eigenvalues 
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with large positive real parts may appear even in a regime where the solution is 
known to be stable [3,5,6]. These spurious eigenvalues appear even when a 
pseudo-Chebyshev-Galerkin approach (in which the basis functions satisfy the 
boundary conditions and the test functions are Chebyshev polynomials) [6] is used 
because they arise from the modeling of the differential operator as well as from 
the boundary conditions. Thus using basis functions that satisfy the boundary 
conditions will not remove all the spurious eigenvalues, though it may improve 
convergence somewhat [6]. A Chebyshev-Galerkin approach recently has been 
proposed which does eliminate spurious eigenvalues [7], although the method is 
less general than the modified tau method proposed here. 

In the following sections the usual tau method will be described and a modified 
tau method will be presented which eliminates spurious eigenvalues. The modified 
method converges at least as rapidly as the usual method. In addition, the use of 
the often neglected tau coefficients as convergence indicators ii11 be discussed and 
a variety of examples using the usual and modified Chebyshev-tau method will be 
presented, including the Orr-Sommerfeld stability problem for plane Poiseuille 
flow. Extensions of the modified tau method to systems of equations will also be 
discussed. An appendix is included which contains several useful relationships 
involving Chebyshev polynomials. Although available, in part, from other sources 
(e.g., [3]) the relationships are included here so that a user of the method can have 
all necessary information in one location. 

2. THE TAU METHOD 

The tau method was first proposed by Lanczos [4] and its use with Chebyshev 
polynomials (Chebyshev functions of the first kind) was later developed extensively 
by Fox [8] and was applied and advocated by Orszag for a wide variety of 
problems [l-3]. The tau method uses a truncated series expansion in a set of com- 
plete functions as an approximation for the solution of an ordinary differential 
equation; the method can also be applied to partial differential equations, integral 
equations, and integro-differential equations. 

To illustrate the use of the tau method, consider an approximate, truncated series 
solution to the ordinary differential equation 

L(u) =o, -l<X<l, (2.1) 

Bj{u(-l)}=B,{u(l)}=O, i+j=N,, (2.2) 

where L is a linear ordinary differential operator of order n = Nb, u is an unknown 
function in the independent variable x, and Bi and Bj represent linear operators 
such that Bi{ u( - 1 )} = 0 and B,{u( l)} = 0 represent the boundary conditions. The 
subscripts i and j index the number of boundary conditions applied at x = - 1 and 
x = 1, respectively. (It is assumed here that differential equation (2.1) contains no 
singularities in the interval of interest; if it does, then the problem must be treated 
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in the complex domain as described in [9], but the modified method presented in 
Section 3 can still be applied.) Let u be approximated by u(x, N), 

N+Nb 

4x7 N) = c akfkb) 
k=O 

(2.3) 

where the uk’s are unknown coefficients and thefk’s are the functions from the com- 
plete set which has inner product symbolized by (., .), and which are orthogonal 
with respect to this inner product. Substituting (2.3) into (2.1) and using the 
inner product for the functions fk, k = 0, 1, . . . . N, yields a system of N + 1 algebraic 
equations for the unknown coefficients ak, k = 0, 1, . . . . N + N,. The remaining 
N, equations are found by substitution of (2.3) into (2.2) directly so that the 
following system of N + N, + 1 equations, linear in the uk’s, is produced: 

(L{U(X, N)}rfk)=o, k = 0, 1, . . . . N, (2.4a) 
NfNh N+Nh 

kTo Bi{fk(-l)}ak= kzo Bj{fk(l)}ak=O, i+j=N,. (2.4b) 

If the problem is an eigenvalue problem, then the unknown eigenvalue of course 
appears in the corresponding matrix equation. Equation (2.4a, b) can be solved 
using standard matrix solver packages like those in the EISPACK or IMSL 
libraries. 

The tau method solves the following modification of problem (2.1,2) exactly: 

(2.5) 
k=l 

N+Nb N+Nh 

,Fo Bi{fk(-l)) ak= ,To B,{fk(l)} ak=O, i+j=N,, (Ma, b) 

where the coefficients Tk for k = 1, . . . . N, are unknowns whose values depend 
ultimately on the boundary conditions. Using the inner product for the functions fk 
differential equation (2.5) is reduced to the system of equations 

(L{Uk N)},fk)=o, k = 0, 1, . . . . N, (2.7a) 

(~(~(-d))~f,~+/c) =Tk<fN+k,fN+k), k = 1, . . . . N,. (2.7b) 

Equation (2.7a) and boundary conditions (2.6a, b) are then solved to yield the 
values of the coefficients uk. If desired, the 7 coefficients 7k, k = 1, . . . . N,, can then 
be computed from Eq. (2.7b). Fox [8] has shown that the tau coefficients can be 
used to place error bounds on the approximate solution u(x, N). When the 
Chebyshev-tau method is used, the error introduced by the tau method will be 
small if the magnitudes of the tau coefficients are small, since the Chebyshev 



140 GARDNER, TROGDON, AND DOUGLASS 

polynomials are bounded in absolute value by one on the interval [ - 1, 11. In 
common practice the tau coefficients are not computed. 

In the Chebyshev-tau method, the Chebyshev polynomials T,(x) (see the 
Appendix) are used as the complete set of expansion functions, with the inner 
product in which Chebyshev polynomials of different orders are orthogonal. The 
formulae given in the Appendix are used to expand products of Chebyshev polyno- 
mials and derivatives of Chebyshev polynomials as expansions in Chebyshev 
polynomials. For example, if a function g(x) and its first derivative g’(x) have series 
expansions in terms of Chebyshev polynomials 

g(x) = f b,T”(X), 

g’(x) = f by’ T,(x) 
n=O 

(2.8) 

(2.9) 

then the coefficients b:” are related to the coefficients 6, by 

p=N 

c b”‘=2 1 ” n pb P’ (2.10) 
p=n+l 
p+nodd 

{ 

2, if n = 0; 
c, = 

1, if n = 1, 2, . . . . 
(2.11) 

The Chebyshev expansion coefficients 6, for a known functionf(x) may of course 
be determined on the interval [ - 1, l] by using the orthogonality of the Chebyshev 
polynomials (see the Appendix): 

bn=$ (f, T,)=$J)-(x) T,(x)(] -x*)-l/2dx. 
n n 

A convenient way to determine approximate values for the coeflicients is to use the 
fact that the relation 

f(cos(kn/N)) = i b, cos(mk/N), 
?I=0 

k = 0, . . . . N, 

is invertible using discrete Fourier transforms [2] as 

d,b, = (2/N) 2 d;‘f(cos(nk/N)) cos(xkn/N), 
k=O 

n = 0, . . . . N, 

for n=O,N; 
for n = 1, . . . . N - 1. 
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To further illustrate the application of the usual tau method, consider the 
eigenvalue problem 

,,“” + Ru”’ - su” = 0, -l<x<l, (2.12) 

u(-l)=zf(1)=U’(-l)=U’(1)=o (2.13) 

where u is the unknown function, R is a real parameter, s is an eigenvalue, and a 
prime denotes differentiation with respect to x. To apply the usual tau method to 
this problem, a complete set of functions (fk} must first be selected; here 
Chebyshev polynomials are chosen and so the Chebyshev-tau method is being 
used. The Chebyshev polynomials T,(x) are orthogonal with respect to the inner 
product defined by 

(T,,, T,) = I’, T,(x) T,(x)( 1 - x~))“~ dx. 

Each term in the differential equation along with each term in boundary conditions 
(2.13) is expanded as a truncated series of Chebyshev polynomials as 

N+4 

4x1 z 1 a,T&), 
k=O 

(2.14) 

up’ + Rai3’ -sap’ = 0, k = 0, . . . . N, 

N+4 N+4 N+4 N+4 

C (-ly’a,= 1 aj= C (-1y+‘j2aj= 1 j2ai=0, 
j=O j=O j=O j=O 

a$$!+k+Ra$!+k-sa’,2’,k=7k, k = 1, 2, 3, 4. 

(2.15) 

(2.16) 

(2.17) 

The coefficients ap), ap’, and ai4’ are given by 

N+4 

Ckak (2)= p=T+2 P(P2-k2)ap, 

p + k even 

(2.18) 

(3&A 
N+4 

Ckak 4.=~+3pCp2(p2-2)-2P2k2+(k2-1)21ap, (2.19) 
p+kodd 

(4) = L 
N+4 

Ckak 24 p=T+4 pCp2(p2 -4)2 - 3p4k2 + 3p2k4 - k2(k” - 4)2] ap. (2.20) 

p+keven 

The system of equations (2.15)-(2.16) can be written in matrix form as 

Aa = sBa (2.21) 
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where the matrices A and B have elements given by 

A,; = X4(% i) F4l% 9 + &3h i) F,(n, i), n = 0, . . . . N; i=O, . . . . N+4, (2.22a) 

FJn, i) =-& i[i2(i2 - 2) - 2i2n2 + (n* - I)*], 
” 

(2.22b) 

F4(4 i) = j& i[i2(i2 - 4)2 - 3i4n2 + 3i2n4 - n*(n’- 4)*], (2.22c) 
n 

A N+,,i=(-l)i, AN+2,t=l, A,+3,i= -(-l)‘i*, A,+4,i=i2, 

(2.224 e, f, g) 

Bni = i(i2 -n’) X2(n, i), n = 0, . . . . N; i=l> ,..., N+4, (2.22h) 

B,i = 0, n = N + 1, . . . . N+4; i=O, ,.., N+4, (2.22i) 

z& 4 = 
0, if i<n+M or n+i+M odd; 
1 (2.23) 
3 if i>n+M and n+i+M even, 

and the column vector a is the vector of the unknown coefficients a,. 
If one seeks to solve the matrix eigenvalue problem (2.21) as posed above with 

an eigenvalue solver package like the IMSL packages EIGRF or EIGZC, spurious 
eigenvalues are generated by the boundary condition rows owing to the resulting 
singular nature of the matrix B. These eigenvalues are, strictly speaking, infinite in 
magnitude, and are not true eigenvalues of the problem. This difficulty can be aver- 
ted by removing the boundary condition rows from the problem which also reduces 
the order of the resulting matrix problem by four (more generally, by Nb). The 
elimination of the boundary condition rows can result in significant savings when 
the eigenvalue problem is posed as a system of differential equations. 

Boundary conditions (2.16) imply that only N + 1 of the N + Nh + 1 = N + 5 coef- 
ficients ak are independent, and thus any four of them can be expressed in terms of 
the remaining coefficients. To do this, the matrices A and B are partitioned as 

Ai,i=A,,i, 

Blni = Bni, n=O, . . . . N; i=O, . . . . N, (2.24a, b) 

A*ni=An.i+N+l, 

B*ni=Bn,i+N+1, n = 0, . . . . N; i=O, . . . . 3, (2.24c, d) 

A3,i= A n+Nfl,i, 

&ni=Bn+~+,=O, n = 0, . . . . 3; i = 0, . . . . N, (2.24e, f) 

Aani = A n+N+l,r+N+l~ 

B4ni=Bn+N+l,r+N+I=O~ n = 0, . . . . 3; i = 0, . . . . 3. ((2.2%, h) 
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Thus there are two matrix equations 

Ala, + A,a, =sB,a, +sB,a,, (2.25a) 

A,a,+A,a,=O (2.25b) 

where a1 = (a,, a,, . . . . aN)T and a2 = (a,,,, . . . . u,,,+~)~. Equation (2.25b) can be 
solved for a2 in terms of a1 as a2 = -A; i A,a, and the result substituted into 
Eq. (2.25a) to produce the [N+ l] x [N + l] matrix eigenvalue problem 

[A, - A,A;’ A,] a, = s[B, - B,A;l A3] a,. (2.26) 

From (2.22d-g) and (2.248) it is clear that A, is non-singular. Once (2.26) has been 
solved for the eigenvalue s and the eigenvector a1 the remaining coefftcients a2 can 
be computed directly by matrix multiplication as defined in (2.25b). 

The tau coefficients can be computed once the eigenvalue s and the original 
eigenvector a have been determined from the equations 

r= [C-SD] a, (2.27a) 

Cni = X&I + N, i) F,(n + N, i) + RX&I + N, i) F,(n + N, i), (2.27b) 

Dni = x2(n + N, i) i(i2 - (n + N)‘), n = 1, . ..) 4; i=O, . . . . N + 4, (2.27~) 

T=(bT2J3JdT (2.27d) 

where the functions F, and F4 are defined in Eq. (2.22b, c). 

3. THE MODIFIED TAU METHOD 

The straightforward application of the tau method presented in the previous sec- 
tion works very well for solving differential equations. As shown in Section 4 and 
in other works (e.g., [3]), spurious eigenvalues are generated by this method when 
it is applied to many eigenvalue problems of order greater than two and in general 
reflects the numerical instability of the method. In some cases the spurious eigen- 
values may in fact be solutions to the eigencondition but are not true eigenvalues 
for the problem. These spurious eigenvalues can be difficult to detect, and if the 
usual tau method is used some unambiguous criterion is needed to identify them. 
One detection method involves computing a set of eigenvalues and t’s for a given 
approximation of order N and to then recompute the same quantities for an 
approximation of order N + 1. Those eigenvalues and corresponding r’s which 
fluctuate wildly as N is varied are spurious. Those eigenvalues with wellbehaved T 
coefficients are true eigenvalues. This, of course, is a viable method for simple 
problems or in problems where one already knows the true eigenvalues (e.g., the 
Orr-Sommerfeld problem tested in Section 4 and in [2].) In general this method 
is inefficient, being computationally intensive and expensive (for large problems), 
and may in fact be inconclusive for relatively small values of N. It is, therefore, 
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preferable not to generate spurious eigenvalues at all. In this section a method is 
proposed which eliminates spurious eigenvalues. This modified method essentially 
involves an appropriate factorization of the differential operator which removes the 
numerical instability. The general idea resembles the stream function-vorticity 
formulation alluded to in [3], which in itself is insufficient to ensure that spurious 
eigenvalues are not produced, as shown in [S]. 

3.1. An Illustration of the Modifed Tau Method 

The modified Chebyshev-tau method will be illustrated for the eigenvalue 
problem of the previous section, viz., 

Un’t + Ru”’ - su” = 0, -l<X<l, (3.1) 

U(-1)=U(1)=24’(-1)=U’(1)=0 (3.2) 

where u is the unknown function, R is a real parameter, s is the eigenvalue, and a 
prime denotes differentiation with respect to x. Application of the method to other 
problems then will become clear. Problem (3.1)-(3.2) is sufficiently simple to be 
solved analytically while retaining the essential features necessary to illustrate the 
application of the modified Chebyshev-tau method. 

To apply the modified tau method to (3.1 k(3.2), the differential equation is first 
written as a system of two second-order ordinary differential equations 

v” + Rv’ - sv = 0, v = u”. (3.3a, b) 

The terms in these differential equations, with those in boundary conditions (3.2), 
are next expanded with truncated series of Chebyshev polynomials as 

N+2 

4x1 x 4x, N) = c a, T,,(x), 
n=O 

(3.4a) 

N+2 

v(x) x u(x, N) = c 6, T,(x). 
II=0 

(3.4b) 

Each equation is then replaced by the corresponding Chebyshev-tau approxi- 
mation: 

b’*‘+Rb”‘-sb ~0 n n 5 n = 0, . . . . N, (3.5a) 
b(2) k+N+Rbf:N-sbk+;=rk, k= 1, 2, (3.5b) 

a(*) = b n “9 n = 0, . . . . N, (3.5c) 

ai2iN-b * k+N=Tk, k= 1, 2, (3.5d) 

N+2 N+2 N+2 N+2 

Jo (-l) 
na,= C a,= 1 (-l)n+1n2a,= C n2a,=0 (3.5e-h) 

n=O n=O ?I=0 



A MODIFIED TAU METHOD 145 

where (3.5e-h) represent boundary conditions (3.2), the coefficients b!,*‘, b;“, and 
ai*’ are given by 

Nf2 

c b(l)=2 c n n pb P’ (3.6a) 
p=n+l 
p+nodd 

N+2 

c b(2) = 
n n pz;+2 P(P2-n2)bpy (3.6b) 

p+neven 

Nf2 

c ac2) = n n ,=T+, P(P2-n2bpy (3.6~) 

p+PlWXB 

and c, is defined in (2.11). Note that since (3.3b) is a definition, fk = 0 for k = 1, 2 
in (3Sd) and so there will be only two tau coefficients, those given by (3.5b). This 
is verified by computation when the i,‘s are left as unknown coefficients, resulting 
in ik = 0, k = 1,2. 

Since the boundary conditions apply to the function u and not v (and hence 
involve only the coefftcients a,, n = 0, . . . . N+ 2) the b-coefficients will be eliminated 
from (3.5a, b) by using (3.5~). The procedure for doing this is readily seen by 
writing (3.5a-c) in matrix notation as 

B,b+B,y-sb,=O, 

B,b+B,y-sb2=0, 

z=B,b+B,y-sy, 

b=Qa 

where the matrix elements are defined by 

Blni = x2@, 4 F2(n, i) 

+ Rflh 0 F,(n, 4, n = 0, . . . . N-2, i=O, . . . . N, 

B,,i=X*(N- 1 +n, i) F2(N- 1 +n, i) 

+Rxl(N- 1 +n, i) F,(N- 1 +n, i), n=O,l; i=O ,..., N, 

&Hi = x2(N+ 1 + n, i) F,(N + 1 + n, i) 

+&,(N+ 1 +n, i)F,(N+ 1 +n, i), n=O, 1; i = 0, . . . . N, 

Bdni = X2(n, N + 1 + i) F,(n, N + 1 + i) 

+RXI(n,N+l+i)F,(n,N+l+i), n=O ,..., N-2; i=O, 1, 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.8a) 

(3.8b) 

(3.8~) 

(3.8d) 
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B,,,=X2(N-l+n,N+l+i)~~(N-l+n,N+l+i) 

+RXI(N-l+n,N+l+i)F,(N-l+n,N+l+i), 

n=o, 1; i=o, 1, 

B,,i=x2(N+l+n,N+l+i)F~(N+1+n,N+I+i) 

+R~1(N+l+n,N+l+i)F,(N+l+n,N+l+i), 

n=O, 1; i=O, 1, 

Qni = x2@, i) F2z(n, 9 + Rx,(n, i) F,(n, i), n = 0, . . . . N; i=O, . . . . N+2, 

Qlni = Qni, n=O ,..., N-2; i=O ,..., N+2, 

Qznr = Q n+N-1.i~ n=O, 1; i = 0, . . . . N + 2, 

F,(n, i) = 2i/c,, F2(n, i) = i(i2 - n2)/c, 

and where 

b = (b,, . . . . b,)=, b, = (b,, . . . . bNp21T=QIa, 

b=(b,-,,b,)==QQ,a 

y=(b N+l* b/+2)=> T = (71, tJT, a = (a,, . . . . aN+2)T. 

This partitioning of the matrix equations is shown in Fig. 1. 

(3.8e) 

(3.8f) 

(3.W 

(3.8h) 

(3.8i) 

(34, k) 

The objective now is to remove the vector y from matrix equations (3.7a, c); this 
is done by solving (3.7b) with (3.7d) for y: 

y= -B,‘[B2Q-sQ2] a. 

b 

--s 

b, 

- 

b, 
- 

Y 

= 

0 

- 

0 

5 

(3.9a) 

FIG. 1. Partitioning of the matrix equations (3.7a-d) in Section 3.1 
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Substituting (3.9a) in (3.7a) results in 

[BIQ-B4B;l BzQ] a=s[Q-B,B;’ Qz] a (3.9b) 

and the unknown o coefficients are found from 

z=B,Qa+B,y-sy (3.9c) 

after the eigenvalue s and eigenvector a are computed from (3.9b). Note that (3.7b) 
is relatively easy to solve since B, is a 2 x 2 matrix and that B5 is non-singular 
unless R= f2[N(N+ l)]“‘. Comparison of (3.9b) with (2.21) reveals the 
difference in the modeling of the differential operator. 

As with the usual tau method, it is useful to remove the boundary condition rows 
(3Se-h) from matrix equation (3.9b); the procedure is identical to that used in 
Section 2. 

Numerical examples of the use of the usual and modified Chebyshev-tau methods 
will be presented in Section 4. 

3.2. The Modified Tau Method for a General Fourth-Order Eigenvalue Problem 

The modified tau method for a class of general fourth-order eigenvalue problems 
can be represented as follows. Suppose the differential equation is written as a 
system of two second-order differential equations 

L,(v}+L,{u}-s[v+L,{24}]=0, v=Lt{u>, (3.10a, b) 

Bi{u(-l)}=Bj{u(l)}=O, i-+-j= Nb=4, (3.1Oc) 

where Lk for k = 1, .,,, 4 are linear second-order differential operators and B, and Bj, 
for i + j= Nb are linear operators representing the boundary conditions as in 
Section 2. Expanding u and v as truncated series of Chebyshev polynomials 

Ni2 

u(x)= 1 a,T,(xh 
n=O 

(3.11a) 

Nf2 

v(x) = c bnTn(x), 
tZ=O 

(3.11b) 

(3.10a-c) can be replaced by the system of equations 

N+2 

,F;, {Bnibi+ A,iai-sCbj+ C,,iail} =‘A 

N+2 

n = 0, . . . . N, (3.12a) 

tn= 1 (B,+N,ibi+A.+N,iai--sCbi+C,+,,iaiI>, n= 1, 2, (3.12b) 
i=O 
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Nf2 

iFo Qniai = bn > 

Nt2 N+2 

n = 0, . . . . N, (3.12~) 

i+j=4, (3.12d) 

where the matrix B represents the action of the operator L, on u, the matrix A 
represents the action of the operator L, on U, the matrix C represents the action of 
the operator L3 on U, and the matrix Q represents the action of the operator L4 on 
U. As before, the two tau coefficients associated with (3.12~) are identically zero 
since this equation is exact, and hence the tau coefficient rows are not shown. Equa- 
tion (3.12a-c) can be partitioned exactly as was done for the example in Section 3.1, 
with matrix B here partitioned exactly as matrix B was there, and matrices A, C, 
and Q here partitioned exactly as was matrix Q in Section 3.1. The b-coefficients 
are removed as before to yield a matrix problem of the form 

Y= -K’CB2Q+A2-4Q2+C2)1 a, 
[B, - B,B;’ B,] Qa + [A, - B,B,’ A,] a 

=sCC, +Q1 -RJK’(C2+Q2)l a, 

z = [B3Q + A31 a + B,y- s[C,a + y]. 

(3.13a) 

(3.13b) 

(3.13c) 

The boundary condition rows can then be removed from (3.13a-b) exactly as 
described in Section 2. Again, if B, is singular, the method fails; however, in most 
problems it is invertible. 

Recently a Chebyshev-Galerkin method has been proposed which removes 
spurious modes and retains the infinite-order convergence of the Chebyshev spec- 
tral methods [7]. This method requires the construction of a set of basis functions 
which are linear combinations of Chebyshev polynomials and which satisfy the 
boundary conditions. An examination of this method reveals that it involves a level 
of computational effort that is at least equivalent to the level required by the 
modified tau method proposed here. In addition, the modified tau method does not 
require the construction of special basis and test functions, and it treats the differen- 
tial operators in a more natural fashion. Lastly, the modified tau method provides 
the convergence information of the tau coefficients, which is not provided by a 
Galerkin method. Thus the modified tau method is a useful alternative to the 
Chebyshev-Galerkin method proposed in [7], as demonstrated by the results of 
Section 4. 

3.3. Extension of the Modified Tau Method to a System of Fourth-Order Equations 

The above method can be extended to eigenvalue problems that are expressed as 
systems of higher-order differential equations, although the removal of the “y” 
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vector is somewhat more diffkult. To illustrate the procedure, consider the 
following eigenvalue problem posed as a system of two differential equations: 

L,,L,u,+L,,L,u,+M,,u,+M,,u,+sCcc,,L,u,+a,,L,u,+N,,u,+N,,u,l=0, 
(3.14a) 

where the operators L,, L,, L,, M,, and N, for i= 1,2; j= 1,2, are linear differen- 
tial operators defined and non-singular on the interval [ - 1, 1] and where 
appropriate boundary conditions on u1 and u2 are prescribed. The quantities a+ 
i = 1,2; j= 1,2, are constants not all of which are zero. To use the modified tau 
method define two new functions v, and u2 by 

uI=Llu,, v2= L,u, (3.15a, b) 

and substitute these into (3.14a, b): 

L,,u,+L,,v,+M,,u,+M,,u,+sCa,,v,+a,,v,+N,,u,+N,,u,l=O, (3.1%) 

L,,v,+L,,u,+M,,u,+M,,u,+s[a,,u, +a22uz+N2,u,+N,,u,]=0. (3.15d) 

Approximating ui and ui, i= 1, 2, by truncated series of Chebyshev polynomials 

N+2 

ui z .C, ain Tm(xh (3.16a) 

N+2 

viz 1 b,T,(x), i= 1,2, (3.16b) 
tZ=O 

and substituting into (3.15a-d) will yield a system of matrix equations. Let matrix 
B, represent the action of the operator L,, i= 1, 2; j= 1, 2, on uj; let matrix 
A,, i = 1,2; j= 1, 2, represent the action of the operator M,, i = 1, 2; j= 1, 2, 
on z+; let matrix D,, i= 1,2; j= 1, 2, represent the action of operator IV,, i= 1, 2; 
j= 1, 2, on uj; let matrix Q, represent the action of the operator Li, i== 1, 2 on ui, 
i= 1, 2; let Pi=(a,n, . . . . ai,N+Z)T, let 6i=(b,n ,..., bi,N+2)T, let bi=(b,, . . . . blN)=, and 

’ let yi= (bi,N+l, b<,N+Z)=. Let ri= (r,,, ri2)= and define the matrices 

(Bkjl )ni = (Bkj)ni, 

n = 0, . . . . N-2; i=O, . . . . N; k=l,2; j=l,2, 

(Bkj~)ni=(Bk~)n+N-,,i, 

n=O, 1; i=O, . . . . N, k= 1,2; j= 1, 2, 

(Bkjs)n; = (B/cj)n+ N+ I, ;, 

n=O, 1; i=O, . . . . N; k=l,2; j=l,2, 

(3.17a) 

(3.17b) 

(3.17c) 
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(B/cjd)ni = (Bkj)n, i+ N + I 9 

n=O, . . . . N-2; i=O, 1; k= 1,2; j= 1,2, 

(Bkj~)ni=(Bkj)n+N-l,i+N+l, 

n=O, 1; i=O, 1; k= 1, 2; j= 1, 2, 

(Bkj~)ni=(Bkj)n+N+l.r+N+l, 

n=O, 1; i=O, 1; k= 1,2; j= 1, 2, 

(Akjl )ni = (A,)ni, 

n=O, . . . . N-2; i=O, . . . . N+2; k=l,2; j=l,2, 

(A/c/Z)ni = (Akj)n + N - I. ;, 

n=O, 1; i=O, ..,, N+2; k=l,2; j=I,2, 

(A,, )ni = (A/cj)n + N + 1, ; 3 

n=o, 1; i=o, . ..) N+2; k=l,2; j=l,2, 

(Q/c, Ini = (Q,c)nr, 
n = 0, . ..) N-2; i=O, . . . . N+2; k= 1, 2, 

(Q~)ni = (Q/c)n+ N- I, iv 

n=o, 1; i=O, . . . . N+2; k= 1, 2, 

(3.17d) 

(3.17e) 

(3.17f) 

ww 

(3.17h) 

(3.17i) 

(3.17j) 

(3.17k) 

with the matrices D,,, k= 1, 2;j= 1, 2; m= 1, 2, 3, being partitions defined in 
terms of D, the same way that matrices A, are defined in terms of A,. This 
partitioning is shown in Fig. 2. The matrix equations are then 

CB,,,Q, + A,,,1 9, + CB,,,Q2 + A,,,] h2 + Bll,y, +B,,,yz 

+dCallQll +D,,,ld, + CalzQz, +D,*,l a,} =O (3.18a) 

CJhQ, + A,,,1 0, + CB,,,Qz + AmI dz + B,,, Y, + B,BY~ 

+ 4 C~,,Qn + D,,zl 4, + Ca,zQx + D,,zl4} = 0, (3.18b) 

~1 = CBmQ, +A,,31 3, + CBmQz + Am1 $2 + by, + Bmyz 

+&IY, +D,,,Ei,+a,,y,+D,,,d,}, (3.18~) 

CB~~~Q~+AZ,~I~,+CB~~,Q~+A~~,I~~+B~~~Y~+B~~~Y~ 

+~{CG,Q,, +&,,I b, + CazQa +Dml a,> =O, (3.18d) 

CBmQ, + Am1 9, + CB,,,Q, + Am1 8, + Bmy, + B,zsyz 

+ dbxQ,z + &,,I i, + C~aQzz + Dm182) = 0, (3.18e) 

72= L-BmQ, + A2131 8, + CB223Q2 + A,,,lf42 +B,,,Y, +Bm y2 

+s{~,,~,+D2,,~1$-~22~2+D22392}. (3.18f) 
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B, = 

A,, = 

Qki 

Qk= 

I I Qk2 

FIG. 2. Partitioning of the matrices B,, Ak,, and Qk in Section 3.3. 

Equations (3.18b, e) are then solved simultaneously for yI and y2: 

YI = - CE,, +sHul I, - CE,, +sH,,] 92, 
YZ = - CE,, + ~Hnlh, - CE,, A- &,I ii,, 

E,=G-’ BlizQi + Ali 1 BlnQi + A,, ’ 
i= 1,2, 

Hi= G-’ ailQiz+Dm 1 ai2QiZ + hi1 ’ 
i= 1,2, 

(Eil )nj = (Ei)nj, n=o, 1; j=o )...) N+2; i=l,2, 

(Eiz)nj = (Ei)n + 2,jy n=O, 1; j=O ,..., N+2; i= 1,2, 

(HiI )nj = (HiIn,, n=O, 1; j=O, . . . . N+2; i= 1,2, 

(HiZ)nj = (Hi), + 2.j, n=O, 1; j=O, . . . . N+2; i= 1,2, 

(3.19a) 

(3.19b) 

(3.19c) 

(3.19d) 

(3.19e) 

(3.19f) 

(3.1%) 

(3.19h) 

(3.19i) 
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where it is assumed that G is invertible. Substituting into (3.18a, d) gives the final 
matrix equations 

CBIIIQ, + A,,, - BI,& - &&1 3, + CB,,,Qz + A,,, - B,,,E,, - Bn&,,l $2 

+d@,,Q,, +Dlg, -B,,,H,, - BmH,,l~, 

+ ~CQI Qx + Dn, - B,J-L -BmH,,l 9, = 0, (3.20a) 

CB2,1Q, +&II -BmE,, -b&l % + CB,,,QZ+A~ -BmEx -B,,&,,I $2 

+sl~,Q,, +D,II -~HII -J%,J,J 8, 

+ ~[l~Q21+ Dm - B,I,% - B,,,H,,l Qz = 0 (3.20b) 

with the same T equations (3.18c, f) as before. The boundary equations can be 
removed with the method described in Section 2. 

For the system of N,, fourth-order equations of the form 

z {L,,L,~~+M,~u~+s[cr,~L,u~+ N,,u,]} =O, i = 1, . . . . NP; -l<x<l, 
,=I 

(3.21a) 

with appropriate linear boundary conditions on the functions ui at rt 1, define the 
functions ui by 

vi = L;u,, i = 1, . . . . N,,, (3.21b) 

and expand ui and ui as truncated series of Chebyshev polynomials as 

N+2 Nf2 

uiz .;, q,T,,(x), v,z c b,T,(x), i= 1, . . . . N,. 
IX=0 

Then letting matrix B,i represent the action of the operator L,i on vi, letting matrix 
Ani represent the action of the operator M,i on ui, letting matrix D,j represent the 
action of the operator N,,, on ui and letting matrix Qj represent the action of the 
operator L, on u,, and partitioning each of these matrices in the same way that the 
corresponding matrices were partitioned for the case N, = 2 above, the general form 
for the modified matrix equations is 

Bnil Qi + AntI - 2 BnjdE,} br 
j=l 

+s 3 aniQi2+D,i,- 2 B,H, Bi=O, n = 1, . . . . Np, (3.22a) 
i=I j= I 

zt* = 2 CBniJQi + AnD] b, + z BnjeYj + S[yi + Dni3] Bi n = 1, . . . . N,, (3.22b) 
i= I /=I 
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Y,,= - 3 {Ej,-SHj”} I. I’ 
j= 1 

153 

n = 1, . . . . N,, (3.22c) 

i = 1, . . . . N,, (3.22d) 

i = 1, . . . . N,, (3.22e) 

B 1, Np. 5 
B 

2, N,,. 5 . 3 (3.22f) 

: . : B N,,, N,,. 5 1 

(E,)nk = (E;)n + 2(j- I), k, i= 1, . . . . Np; j= l,..., NP; n=O, 1; k=O, . . . . N+2, 

ww 

(Hij)nk=(Hi),+2(j--l),k, i=l,..., NP; j=l,..., N,,; n=O, 1; kc0 ,..., N+2, 

(3.22h) 

provided G is invertible. The boundary condition rows can be removed from 
(3.22a, b) using the method described in Section 2. 

Notice that in the preceding development the modified method depends on the 
Chebyshev polynomials only through the entries in the matrices that represent the 
differential operators. The matrix manipulations themselves are entirely indepen- 
dent of the basis functions used, and hence this method can be used with any tau 
method. 

4. NUMERICAL EXAMPLES 

In this section three fourth-order eigenvalue problems are solved using the usual 
Chebyshev-tau method of Section 2 and the modified Chebyshev-tau method of 
Section 3. The eigenvalues obtained are compared to exact or accepted eigenvalues. 
The convergence of the modified Chebyshev-tau method is compared to that of the 
usual Chebyshev-tau method, and the use of the tau coefficients as convergence 
indicators is demonstrated. An obvious variation of the modified Chebyshev-tau 
method is explored as well. 
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Example 1. A Fourth-Order Eigenvalue Problem with a Third Derivative Term 

Consider the eigenvalue problem used as an example in Sections 2 and 3: 

,J”’ + Ru”’ - su” = 0, -l<X<l, (4.1) 

u(-1)=24(1)=U’(-1)=U’(1)=0 (4.2) 

where u is the unknown function of the independent variable x, s is the eigenvalue, 
and R is a real parameter. The eigencondition for this problem is 

1 - coshE:h+:) 
w 

] + 2s sinh( R2 + 4s)“’ = o 
cash R (4.3 1 

TABLE I 

First Two Eigenvalues and Spurious Eigenvalues Generated 
by the Usual Chebyshev-Tau Method for Example 1, R=O 

Truncation 
order, N + 4 Eigenvalue 1511 IT21 IT31 1741 

9 O.OOOOOOO” 0.736 x lo-” 
O.OOOOOOW 0.736 x lo-* 

-9.8923149 0.840 x IO-” 
-25.387815 0.280 x lo3 

14 O.OOOOOOO” 0.240 x lOa 
0.0000000” 0.240 x 10s 

-9.8696046 0.534x lo-* 
-20.190734 0.993 x lo-l4 

19 O.OOOOOOO” 0.176x 10m2 
0.0000000” 0.176 x 10m2 

- 9.8696043 0.516 x lo-’ 
- 20.190729 0.157 x lo-’ 

24 O.OOOOOOO” 0.673 x 10”’ 
O.OOOOOOO” 0.637 x 10”’ 

- 9.8696045 0.183 x 10-s 
- 20.190728 0.278 x 1O-6 

29 O.OOOOOOO” 0.164 X 1or2 
O.OOOOOOO” 0.164 x 10” 

- 9.8696043 0.995 x 10 -’ 
- 20.190728 0.381 x 10m6 

34 O.OOOOOOO” 0.164 x lOI 
O.OOOOOOO” 0.164 x lOI 

-9.8696071 0.604 x 10mb 
- 20.190728 0.221 x10-5 

Exact eigenvalues: - 9.8696044, - 20.1907286 

0.369 x lo6 
0.369 x lo6 
0.346 x lOI 
0.189 x 1O-22 

0.000 
0.000 
0.000 
0.173 

0.106 x 10” 
0.106 x 10”’ 
0.630 x lo-’ 
0.143 x lo-’ 

0.224 x 10-l 
0.224x 10-l 
0.578 x 10m8 
0.232 x 10m6 

0.196 x 10-l 
0.196 x 10-l 
0.221 x 10 m5 
0.729 x 10 -’ 

0.196 x 10-r 
0.196 x 10-r 
0.379 x 1o-6 
0.51 I X 1o-5 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
O.OQO 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0.000 
O.OOQ 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 

0 Spurious eigenvalue. 
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When R is zero the problem is self-adjoint and all the eigenvalues are real and less 
than zero; when R is non-zero the problem is not self-adjoint and the eigenvalues 
are no longer real, though the real parts are negative. It may also be shown that 
s = - R2/4 is not an eigenvalue. 

Results for the solution of the problem (4.1, 2) when R = 0 are given in Tables I 
and II. In Table I the four largest eigenvalues generated by the usual Chebyshev- 
tau method are given for various truncation orders, along with the magnitudes of 
the values of the corresponding tau coefficients; the two largest exact eigenvalues, 
determined from eigencondition (4.3), are also given. The matrix eigenvalue 
problem was solved using the EISPACK driver RG on a Cray-2 supercomputer 
using single precision (64-bit) arithmetic. Notice that the two largest eigenvalues, 
which are both zero, are in fact spurious eigenvalues as clearly indicated by the 
increasing magnitudes of the values of the tau coefficients. Note that, although zero 
is a solution of eigencondition (4.3), it is not an eigenvalue for problem (4.1, 2). By 
comparison to the exact eigenvalues, the non-spurious eigenvalues generated by the 
usual Chebyshev-tau method are seen to converge to the true eigenvalues as the 
truncation order N+ 4 increases. The decreasing magnitudes of the values of the 
tau coefficients also indicate this convergence. Note that the magnitudes of the 
values of the tau coefficients for the spurious eigenvalues increase as the truncation 
order increases. Although there are four tau coefficients for each eigenvalue in the 
problem when the usual Chebyshev-tau method is used, the simplicity of the 
differential operators for this problem forces two of these to be identically zero. 

TABLE II 

First Two Eigenvalues Generated by the 
Modified Chebyshev-Tau Method for Example 1, R = 0 

Truncation 
order, N + 2 Eigenvalue 171 I IT21 

9 -9.8700602 
-20.295078 

14 - 9.8696045 
- 20.190730 

19 - 9.8696043 1 
-20.1907286 

24 - 9.8696044 
-20.190728 

29 - 9.8696047 
-20.190729 

34 -9.8696151 
- 20.190729 

Exact eigenvalues: -9.8696044, -20.1907286 

0.247 x 10-l’ 
0.356 x lo2 

0.105 x lo-) 
0.425 x lo-‘* 

0.119 x lo-lo 
0.305 x 10 -5 

0.595 x 10 -9 
0.489 x lo-lo 

0.411 x lo-” 
0.150x 1o-8 

0.357 x 1o-8 
0.744x 1o-8 

0.179 
0.205 x 1O-24 

0.000 
0.612 x lo-* 

0.104 x 1o-9 
0.127 x lo-’ 

0.690x lo-” 
0.146 x lo-’ 

0.256 x 10 -’ 
0.258 x 10-s 

0.203 x lo-i0 
0.906 x lo-’ 
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In Table II the two largest eigenvalues generated by the modified Chebyshev-tau 
method are given for various truncation orders, along with the magnitudes of the 
values of the corresponding tau coefficients. The matrix eigenvalue problem was 
solved using the EISPACK driver RG on a Cray-2 supercomputer using single 
precision (64-bit) arithmetic. No spurious eigenvalues are generated, and the largest 
eigenvalue converges to the exact value at least as fast as in the usual Chebyshev- 
tau method. 

Problem (4.1,2) was also solved for R = 4; results are presented in Tables III and 
IV for the usual and modified Chebyshev-tau methods, respectively. Eigenvalues 
were determined using the EISPACK driver RG on a Cray-2 supercomputer using 
single precision (64-bit) arithmetic. Again notice the appearance of two spurious 
eigenvalues when the usual Chebyshev-tau method is used; these are clearly 
identified by the fact that magnitudes of the values of their tau coefficients increase 
as the truncation order increases. The complex conjugate eigenvalue pair with 
largest real part generated by the usual Chebyshev-tau method is seen to converge 
to the exact eigenvalue pair (determined from eigencondition (4.3)) by comparison 
with the exact values, and this convergence is clearly indicated by the decreasing 
magnitudes of the values of the tau coefficients for these eigenvalues (Table III). 
When the modified Chebyshev-tau method is used, no spurious eigenvalues are 
produced and the eigenvalues converge to the exact values at least as rapidly as for 
the usual Chebyshev-tau method (Table IV). 

TABLE III 

First Two Eigenvalues and Spurious Eigenvalues 
Generated by the Usual Chebyshev-Tau Method for Example 1, R = 4 

Truncation 
order, N + 4 Eigenvalue ITI I 1521 IT31 IT41 

9 O.OOOOOOO + OBOOOOOOi” 0.151 x lo5 0.959 x lo5 o.ooo o.ooo 
- 16.816664 k 9.00728341’ 0.840 x 10-l’ 0.346 x 10’ o.ooo o.ooo 

14 O.OOOOOOO & OBOOOOOOi” 
- 17.912904 f 9.458387% 

19 O.OOOOOOO f O.OOOOOO0i” 
- 17.912922 5 9.4584014i 

24 O.OOOOOOO & OIKWOOOi” 
- 17.912928 k9.45840161 

29 O.OOOOOOO + O.OOOOOOOi” 
- 17.912922 +9.4584018i 

0.917 x 10’ 
0.773 x 10-l 

0.219 x 10s 
0.169 x 1O-4 

0.159 x IO’O 
0.691 x 10m6 

0.649 x lo9 
0.167 x 1O-5 

0.648 x lo8 
0.928 x lo-* 

0.266 x lo9 
0.181 x 10m5 

0.122 x lo9 
0.116 x 1O-6 

0.130 x 10” 
0.159 x 10mb 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

34 O.OOOOOOO + OI@OOOOOi” 0.410 x 10” 0.208 x 10” 0.000 0.000 
- 17.912923 f 9.45840331 0.552 x 1O-5 0.264x 10m6 0.000 0.000 

Exact eigenvalues: - 17.9129218 _+ 9.458401441 

o Spurious eigenvalue. 
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TABLE IV 

First Two Eigenvalues Generated by the 
Modifted Chebyshev-Tau Method for Example 1, R = 4 

Truncation 
order, N + 2 Eigenvalue 

9 - 15.089059 + 8.01687371‘ 0.942 x 10’ 0.266 x 10’ 
14 -17.912916+9.4.583864i 0.117 x 10-l 0.150 X to-* 
19 - 17.912922 + 9.45840141 0.119 x 1om5 0.197 x 10mh 
24 -17.912922+9.4584015i 0.228 x lo-* 0.358 x 10m9 
29 - 17.912922 +9.4584Olli 0.472 x 10 ’ 0.669 x 10-s 
34 - 17.912926 k 9.45840941 0.168 x 1om5 0.238 x 10m6 

Exact eigenvalues: - 17.9129218 + 9.45840144i 

An obvious variation of the modified Chebyshev-tau method presented in 
Section 3 is to factor only the highest order derivative in the equation-in this 
example, the fourth-order derivative-and retain all the lower order derivatives of 
the original function. In terms of this example, the system 

v” + Ru”’ - SU” = 0, v = u”, -l<x<l, (4.4) 

is solved along with boundary conditions (4.2). The coeffkients of the expansion of 
v were expressed in terms of the coefftcients of the expansion of u and removed, as 
in the modified Chebyshev-tau method presented in Section 3. The results of 
solving (4.4) this way are presented in Table V (the eigenvalues were determined by 
the EISPACK driver RG on a Cray-2 computer using single precision arithmetic). 
Notice that no spurious eigenvalues are generated, and the eigenvalues converge to 
the exact values, at’about the same rate as those generated by the usual or modified 

TABLE V 

First Two Eigenvalues Generated by the Variation of the 
Modified Chebyshev-Tau Method for Example 1, R = 4 

Truncation 
order, N + 2 Eigenalue 1711 1721 

9 - 17.945354 k 9.49081661 0.478 x lo3 0.483 x 10’ 
14 - 17.912924 9.45839022’ k 0.722 x 1O-2 0.232 x lo2 
19 - 17.912922 9.45840141 + 0.685 x 10’ 0.120 x 10-G 
24 - 17.912922 9.4584015i + 0.176 x 1O-8 0.520 
29 - 17.912922 9.45840191’ f 0.385 x lo-* 0.125 x lo-’ 
34 - 17.912925 9.45840971 + 0.108 x lo-’ 0.784 x lO-4 

Exact eigenvalues: - 17.9128218 9.45840144i k 

581/80/1-l, 
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Chebyshev-tau methods. The convergence is clearly indicated by the magnitudes of 
the values of the tau coefficients. 

Example 2. The Orr-Sommerfeld Stability Equation for Plane Poiseuille Flow 

The Orr-Sommerfeld stability equation for plane Poiseuille flow has been solved 
by a variety of methods, including the usual Chebyshev-tau method [2, 61. The 
equation results from assuming that a velocity disturbance of the form 

V(x, y, t) = u(y) exp[icr(x - st)] (4.5) 

perturbs the steady pressure-induced flow U(y)= (1 -y’) between two infinite 
parallel plates located (in dimensionless variables) at y = f 1; the resulting linear 
stability equation is 

CU”” - 2a*u” + a”u]/( - iaR) + [ ( U - s)(u” - a’u) - U”u] = 0, - 1 <y< 1, (4.6) 

with boundary conditions 

U(-1)=U(1)=z4’(-1)=U’(1)=0 (4.7) 

where u is the amplitude of the velocity disturbance (defined in Eq. (4.5)), a is the 
wavenumber, R is the Reynolds number, the stability parameter for this problem, 
and U is the known steady base flow whose stability is being examined. From 
Eq. (4.5) it is seen that the critical eigenvalue S, is the eigenvalue s whose imaginary 
part first becomes positive as R is increased from zero, because for this eigenvalue 
the disturbance V(x, y, t) will grow exponentially with time instead of being 
damped out. 

Problem (4.6, 7) was solved for a = 1.00 and R = 10,000 using the usual 
Chebyshev-tau method, the modified Chebyshev-tau method, and the variation of 
the modified Chebyshev-tau method described in Example 1. The published critical 
eigenvalues of Orszag [2] and Zebib [6] are used for comparison with the eigen- 
values generated here. The results are presented in Tables VI-VIII. 

The usual Chebyshev-tau method solves problem (4.6, 7) directly. The eigen- 
values reported in Table VI were determined using the IMSL routine EIGZC on 
a CDC 835 computer with single precision (60-bit) arithmetic. Two spurious eigen- 
values with large imaginary parts are produced; these spurious eigenvalues are 
clearly recognized by the large magnitudes of the values of at least one of the tau 
coefficients. The convergence of the eigenvalue with largest imaginary part to the 
published eigenvalue is evident by comparison with the published value and is 
clearly indicated by the decreasing magnitudes of the values of the tau coefficients. 

The modified Chebyshev-tau method solves problem (4.6, 7) as 

Dv/(-iaR)+ [(U-s)v- U”u] =O, -l<y<l, (4.8a) 

v=Du, Df-f”-a*f, -l<y<l, (4.8b) 
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TABLE VII 

Least Stable Eigenvalues Generated by the Modified Chebyshev-Tau Method 
for the Orr-Sommerfeld Stability Equation (Example 2, a = 1.00, R = lO,ooO) 

Truncation 
order, N + 2 Eigenvalue IT1 I IT21 

14 
19 
24 
29 
34 
39 

Exact critical eigenvalue: 

0.52900096 + 0.220744141’ 0.598 x 10 -~ ‘2 0.357 x lo2 
0.73 111753 + 0.0969736581 0.317 x IO2 0.224 x 1O-9 
0.24033386 + 0.0064426763i 0.500 0.493 x 10 - I0 
0.23757258 + 0.003743827li 0.155 X 10-O 0.980 x 10-j 
0.23755789 + 0.0037060033i 0.734 x 10-i 0.342 x 10 9 
0.23752741 +0.0037419091i 0.812 x lOmy 0.151 X 10-I 

0.23752649 + 0.003739671’ [Z, 61 

with boundary conditions (4.7). Results are presented in Table VII. The eigenvalues 
were determined using the EISPACK driver CG on a Cray-2 supercomputer with 
single precision (64-bit) arithmetic. No spurious eigenvalues were produced, and 
the eigenvalue with largest imaginary part converges to the published value as 
is evident by comparison with the published value. The convergence is clearly 
indicated by the decreasing magnitudes of the values of the tau coefficients, and in 
this case is more rapid than that of the usual Chebyshev-tau method. 

The variation of the modified Chebyshev-tau method solves problem (4.6, 7) as 

[u”-2a2u+a4u]/(iaR)+ [(U-s)(u-a’~)-Vu]=O, v = u”, -l<y<l, 
(4.9a, b) 

with boundary conditions (4.7). Results are presented in Table VIII. The eigen- 
values were determined using the IMSL routine EIGZC on a CDC 835 computer 

TABLE VIII 

Least Stable Eigenvalues Generated by the 
Variation to the Modified Chebyshev-Tau Method for the 

Orr-Sommerfeld Stability Equation (Example 2, a = 1.00, R = 10,000) 

Truncation 
order, N + 2 Eigenvalue ITiI IT21 

14 0.48120108 +0.22955218i 0.277 x 10-i’ 0.454 x 102 
19 0.66622766 + 0.122351931 0.521 x 10’ 0.000 
24 0.68929954 + 0.0269984161 0.123 x lo-” 0.210 x 102 
29 0.23812852 +O.O039733169i 0.000 0.286 
34 0.23764505 + 0.0037498712i 0.133 0.000 
39 0.23752419 +O.O037457516i 0.623 x 10 ” 0.250 x 10-l 

Exact critical eigenvalue: 0.23752649 + 0.003739671’ 12, 63 
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with single precision (60-bit) arithmetic. No spurious eigenvalues are produced. The 
eigenvalue with largest imaginary part converges to the published value as is 
evident by comparison with the published value. (Note that both the symmetric 
and antisymmetric eigenmodes were retained here. Since the least stable eigenmode 
is symmetric and the symmetric and antisymmetric modes are uncoupled, only the 
symmetric modes need to be considered, as was done in [2] and [6].) The 
convergence is clearly indicated by the decreasing magnitudes of the values of the 
tau coefficients, although the convergence is slower than for the usual or modified 
Chebyshev-tau methods. 

Example 3. A Fourth-Order Eigenvalue Problem 

Consider finally the problem 

D(D-s)u=O, r, <r < r2, rl >O, (4.10a) 

Du=gu I 2du l(l+l)u 
dr2 -- r2 r dr 

(4.1Oc) 

where 1 is a positive integer. This type of problem arises, for example, when the 
method of partial spectral expansions is used to solve linearized fluid flow problems 
in a spherical geometry, in which r represents the radial variable and u represents 
a function related to the velocity. To solve problem (4.1Oa-c), the independent 
variable r is first mapped to a new independent variable with range [ - 1, 11, e.g., 

x = [2r - (rl + rz)]/(rz - r,). (4.11) 

Using mapping (4.1 l), problem (4.10a-c) was solved for I= 1, rl = 99.00, and 
r2 = 100.00 using both the usual and modified Chebyshev-tau methods. A problem 
similar to this has arisen in the authors’ hydrodynamic stability studies in spherical 
shells [lo]. Since the problem is self-adjoint, the eigenvalues are real, and they are 
also negative, as may be shown from the eigencondition. The two largest true eigen- 
values generated by each method are shown in Tables IX and X for various trunca- 
tion orders, along with any spurious eigenvalues generated; the eigenvalues were 
determined using the EISPACK driver RG on a Cray-2 supercomputer using single 
precision (64-bit) arithmetic. The usual Chebyshev-tau method generates two 
spurious eigenvalues which are clearly identified by their large magnitude and 
positive sign, as well as by the large magnitudes of the values of the tau coefficients 
(Table IX).. In addition, the magnitudes of the values of the tau coefficients for the 
spurious eigenvalues increase with truncation order, rather than decrease. The 
eigenvalues do converge to the true values as may be seen by comparison with the 
true values (determined from the eigencondition); this convergence is clearly 
indicated by the decreasing magnitudes of the values of the tau coefficients. 



TA
BL

E 
IX

 

Fi
rs

t 
Tw

o 
Ei

ge
nv

al
ue

s 
an

d 
Sp

ur
io

us
 

Ei
ge

nv
al

ue
s 

G
en

er
at

ed
 

by
 t

he
 

U
su

al
 

C
he

by
sh

ev
-T

au
 

M
et

ho
d 

fo
r 

Ex
am

pl
e 

3 
(I 

= 
1,

 r,
 =

 9
9.

00
, 

r2
 =

 1
00

.0
0)

 

Tr
un

ca
tio

n 
or

de
r, 

N
 +

 4
 

Ei
ge

nv
al

ue
 

15
11

 
IT

*1
 

17
31

 

9 
0.

17
08

85
08

 x
 l

o5
 ”

 
0.

91
37

83
95

 x
 l

o4
 U

 
-0

.3
94

78
15

5 
x 

lo
* 

-0
.8

13
53

35
9 

x 
lo

2 

14
 

0.
11

77
56

73
 x

 l
o6

 ”
 

0.
87

45
90

04
 x

 1
0’

 o
 

-0
.3

94
77

93
4 

x 
10

2 
-0

.8
07

62
98

1 
x 

10
’ 

19
 

0.
44

49
02

16
 x

 I
O

6 
a 

0.
34

89
04

72
 x

 l
o6

 a
 

-0
.3

94
77

93
5 

x 
IO

2 
-0

.8
07

62
98

2 
x 

lo
2 

24
 

0.
11

78
78

79
 x

 1
0’

 ”
 

0.
99

40
73

26
 x

 l
o6

 U
 

-0
.3

94
77

93
5 

x 
lo

2 
-0

.8
07

62
98

3 
x 

10
’ 

Ex
ac

t 
ei

ge
nv

al
ue

s:
 

- 
39

.4
78

21
6,

 
-8

0.
76

29
82

 

0.
22

4 
x 

lo
5 

0.
59

9 
x 

1O
’O

 
0.

22
1 

0.
24

2 
x 

10
’ 

0.
55

2 
x 

lo
9 

0.
16

8 
x 

1O
’O

 
0.

16
8 

x 
lo

-*
 

0.
36

4 
x 

IO
’ 

0.
47

1 
x 

10
’ 

0.
10

9 
x 

lO
I 

0.
13

4 
x 

1o
-4

 
0.

13
0x

 
10

-l 

0.
37

3 
x 

10
” 

0.
21

9 
x 

10
12

 
0.

36
7 

x 
lo

-’ 
0.

28
2 

x 
10

m
2 

0.
62

8 
x 

10
s 

0.
29

5 
x 

10
’ 

0.
28

6 
x 

10
’ 

0.
52

6 
x 

lo
3 

0.
78

3 
x 

10
” 

0.
10

5 
x 

10
’ 

0.
41

7 
x 

1o
-5

 
0.

39
0 

x 
10

2 

0.
43

8 
x 

10
” 

0.
22

8 
x 

lo
’* 

0.
18

5 
x 

lo
-’ 

0.
22

3 
x 

10
 m

3 

0.
95

9 
x 

10
’4

 
0.

68
2 

x 
lo

8 
0.

33
1 

x 
lo

-” 
0.

55
2 

x 
10

-l 

0.
35

1 
x 

lo
5 

0.
14

3 
x 

lo
5 

0.
16

0 
x 

10
m

2 
0.

80
4 

0.
28

1 
x 

lo
9 

0.
16

0 
x 

10
“ 

0.
34

9 
x 

lo
-*

 
0.

14
0x

 
10

-l 

0.
11

6 
x 

10
s 

0.
94

8 
x 

lo
7 

0.
49

1 
x 

lo
-’ 

0.
48

6 
x 

lo
-’ 

0.
20

1 
x 

10
” 

0.
12

1 
x 

lo
6 

0.
15

8 
x 

10
m

9 
0.

11
6x

 
lo

-” 

17
41

 
c!

 
0.

96
9 

x 
10

’ 
$ 

0.
39

4 
x 

10
2 

z 
0.

44
1 

x 
10

-S
 

0.
22

2 
x 

10
 - 

2 
.!!

 

0.
75

3 
x 

lo
6 

0.
43

0 
x 

10
’ 

0.
93

9 
x 

lo
-” 

i 

0.
37

5 
x 

1o
-4

 
“2

 

0.
30

5 
x 

lo
5 

5 
0.

25
0 

x 
10

’ 
u 

0.
13

0x
 

lo
-9

 
B 

0.
11

8 
x 

lO
-9

 
s 

0.
52

5 
x 

10
s 

F 
0.

31
6 

x 
10

s 
M

 

0.
45

1 
x 

10
-1

2 
0.

30
4 

x 
lo

-’ 

u 
Sp

ur
io

us
 

ei
ge

nv
al

ue
 



A MODIFIED TAU METHOD 163 

TABLE X 

First Two Eigenvalues Generated by the Modified Chebyshev-Tau Method 
for Example 3 (I= 1, r, = 99.00, = 100.00) r2 

Truncation 
order, N + 2 Eigenvalue 171 I IT21 

9 - 39.479634 0.455 x 1o-2 0.725 x 10-l 
-81.180351 0.296 x lo4 0.641 x 10’ 

14 - 39.477812 0.426 x 10m4 0.105 x 10m6 
- 80.762989 0.393 x 10-l 0.483 

19 -39.477812 0.378 x 1O-9 0.556 x 10-s 
- 80.762872 0.238 x 1O-3 0.542 x 1O-6 

24 -39.477812 0.165 x lo-’ 0.477 x lo-” 
- 80.762981 0.475 x 10 -6 0.103 x 1o-4 

Exact eigenvalues: - 39.478216, - 80.762982 

The eigenvalues determined by the modified Chebyshev-tau method are given in 
Table X. No spurious eigenvalues are produced. The eigenvalues converge to the 
true values as may be seen by comparison with the true values; this convergence is 
clearly indicated by the decreasing magnitudes of the values of the tau coefficients, 
and the modified method converges at least as fast as the usual Chebyshev-tau 
method. 

5. THE TAU COEFFICIENTS 

As demonstrated in the previous section, the tau coefficients are useful for iden- 
tifying spurious eigenvalues and for indicating the degree of convergence of the tau 
and modified tau methods. In fact, computation of the tau coefficients is essential 
to the unambiguous identification of the spurious eigenvalues generated by the 
usual tau method, in the absence of other criteria for identifying them. For example, 
in Examples 1 (when R = 0) and 3 of the previous section, the self-adjointness of 
each problem ensured that the eigenvalues for each are real, and study of the eigen- 
condition indicated that the eigenvalues for each are in fact negative; thus eigen- 
values with non-zero imaginary parts or eigenvalues with positive real parts could 
be rejected on the basis of this information. However, in non-self-adjoint problems, 
the eigenvalues are in general complex, and may not all be of one sign; or the 
problem may be so complex that it is impossible, or at least impractical, to obtain 
such information about the eigenvalues. In such cases, the tau coefficients should be 
calculated to unambiguously identify the spurious eigenvalues generated by the 
usual tau method, or else the modified tau method should be used. 

The major disadvantage with computing the tau coefficients for an eigenvalue is 
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that, to do so, the eigenvector corresponding to the eigenvalue must also be com- 
puted. However, the increase in computation is often justified by the convergence 
information provided by the tau coefficients. 

It is important to note that in eigenvalue problems, the values of the tau coef- 
ficients are dependent on the eigenvector used to calculate them. Since the eigenvec- 
tor is unique in direction only, the tau coefficients corresponding to a given eigen- 
value and eigenvector could be made artificially large or small by multiplying the 
eigenvector by a constant factor: if x = (x,, x,, . . . . xN)’ is an eigenvector corre- 
sponding to the eigenvalue s, then so is c(x = (CCQ, tlx, ,..., CIX~)= for any non-zero CL 
The tau coefficients for the eigenvalue s are multiplied by c1 as well. To make the 
values of the tau coefficients meaningful, it is important that the eigenvector be nor- 
malized in some consistent way. An easy and useful way to do this is to divide the 
eigenvector by the first non-zero element or the first non-zero element whose 
magnitude is greater than some predetermined value. This latter method was used 
in the computations discussed in Section 4. 

Since only the magnitudes of the values of the tau coefficients are necessary for 
identifying spurious eigenvalues or indicating convergence, it is often helpful to use 
merely the sum of the absolute values of the tau coefficients to do this. Using this 
quantity is valid because if any one of the magnitudes of the tau coefficients for a 
given eigenvalue is large, then that eigenvalue is either spurious or a poor 
approximation to a true eigenvalue. Using the sum of the absolute values of the tau 
coefficients is especially helpful when a large system of equations is being solved: if, 
for example, a system of N fourth-order equations is being solved, then there will 
be 4N tau coefficients for each eigenvalue; and, if any one of these is large in 
magnitude, then the eigenvalue is either spurious or not a good approximation to 
a true eigenvalue. 

6. SUMMARY AND CONCLUSIONS 

A modification of the usual tau method has been presented which eliminates the 
spurious eigenvalues produced by that method for many eigenvalue problems. The 
modified method essentially involves an appropriate factorization of the differential 
operator; it has been developed here for an eigenvalue problem posed as a single 
differential equation of order greater than 2 and also for a system of such equations. 
By solving a variety of fourth-order eigenvalue problems, including the Orr-Som- 
merfeld stability equation for plane Poiseuille flow, it has been demonstrated that 
the modified method does not generate spurious eigenvalues and converges at least 
as rapidly as the usual method, sometimes more rapidly. An obvious modification 
of the modified method is also explored; although it does not produce spurious 
eigenvalues, it often does not converge as rapidly as either the usual method or the 
modified method. The use of the often-neglected tau coefficients as identifiers of 
spurious eigenvalues and indicators of convergence has also been demonstrated. 
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APPENDIX. CHEBYSHEV POLYNOMIALS 

Chebyshev polynomials, also called Chebyshev functions of the first kind, are the 
solutions of the Stiirm-Liouville problem 

d 
(l-x2)“*- 

d 

dx 
(l-x2)“2-u +&=O, 

dx 1 -1 <x< 1, n=O, 1, . . . . (Al) 

u( - 1) and u( 1) finite. 

The solutions U(X) = T,(x) are given by 

T,(x) = cos[n cos-l(x)]. 

The first three Chebyshev polynomials are 

To(x) = 1, T,(x) = -7 T*(x) = 2x2 - 1, 

and the Chebyshev polynomials satisfy the recursion relation 

T,+~(~)-~xT,+~(x)+T,(x)=O, n B 0. 

Some useful relations for derivatives are 

(1 -x2) TXx)=n[T+,(x)-XT,,(X)], n> 1, 

= n[xTn(x) - T,, 1(x)1, n > 0, 

= (nP)IITn~ I(X) - Tn+ ,(x)1, n> 1, 
(1 -x2) T:(x)-xTn(x)+n2T,(x)=0, n 2 0. 

Chebyshev polynomials are orthogonal in the inner product 

CT,, T,,)=j’ T,(x) T,(x)(l -x2)-1’2dx=c,n6,,/2, 
--I 

2, if n=O; 
c, = 

1, if n = 1, 2, . . . . 

Some other useful results are 

Tn(-x1=(-l)“T,,(x), 

Tn(fl)=(+l)“, 

T2n(O) = ( - 1 I”, 
T 2n+1(0)=0, 

T,(x) T,(x)= CT,+,(x)+ 7’,,-,,(x)W, 

b42) 

(A3) 

(A4) 

(A5) 

(A61 

(A7) 

((A81 

((A9) 

(AlO) 

(All) 

(A12) 
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k-l 

T;k’(ll)=(+l)n+k m!. (n2-m2)/(2k- l)!!, k> 1, (A13) 

N!! 3 
1 

N(N-2)(N-4)... 1, for N odd; 
N(N-2)(N-4)...2, for N even, 

where in (All) TLk’ is the kth derivative of T,(x). Most of these results follow from 
Eq. (A2) and trigonometric identities. 

Consider now the expansion of a function f(x) or its derivatives in terms of 
Chebyshev polynomials on the interval [ - 1, 11. Assume that f and its derivatives 
can be expanded as 

f(x)= f 4°‘T”(x), $$= f ap T,(x), m = 0, 1, . . . . 
n=O fl=O 

Then recursion relation (A15) below gives 

c a”‘=2 f ” n pa P’ n 3 0, 
p=n+l 
p+nodd 

c .(2) zz 
n n pzT+2 PCP2-n21 $7 

, 
p+neven 

p=;+3 PCPZ(P2-2)- 
p+nodd 

n 3 0, 

2p’n’ + (n’ - 1 )‘I a P’ 

c,at;ll=l O” 24 ,=;+4 pj-p2(p2-4)2 -3p4n2+3p2n4--2(n2-4)21 spy 

p + ” even 

where c, is defined by (A7). 
Suppose now that a function g(x) has the expansion 

(A14) 

(A151 

(‘416) 

(A17) 

(Al81 

n B 0, 

(A19) 

(‘420) 

on the interval [ - 1, 1 J and the product of g with the mth derivative off has the 
expansion 

d”f 
If gdx”=.=, e!Y T,(x), m> 1. (A21 1 
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Then the coefficients ei”‘) are given by 

c ,rm& 
+OZ 

n n c 2,=-m 
clplcl - a@! b n PI In PI IPI’ 

n>O; m>l, 

as is shown in [2]. 
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